Role of the p38 Mitogen-Activated Protein Kinase/Cytosolic Phospholipase A2 Signaling Pathway in Blood—Brain Barrier Disruption after Focal Cerebral Ischemia and Reperfusion

Author:

Nito Chikako123,Kamada Hiroshi123,Endo Hidenori123,Niizuma Kuniyasu123,Myer D Jeannie123,Chan Pak H123

Affiliation:

1. Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA

2. Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA

3. Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA

Abstract

Cytosolic phospholipase A2 (cPLA2) is a key enzyme that mediates arachidonic acid metabolism, which causes cerebral ischemia-induced oxidative injury, blood—brain barrier (BBB) dysfunction, and edema. Recent reports have shown that p38 mitogen—activated protein kinase (MAPK) is related to phosphorylation and activation of cPLA2 and release of arachidonic acid. However, involvement of the p38 MAPK pathway in cPLA2 activation and of reactive oxygen species in expression of p38 MAPK/cPLA2 after ischemia—reperfusion injury in the brain remains unclear. To address these issues, we used a model of transient focal cerebral ischemia (tFCI) in rats. Western blot analysis showed a significant increase in expression of phospho-p38 MAPK and phospho-cPLA2 in rat brain cortex after tFCI. Activity assays showed that both p38 MAPK and cPLA2 activation markedly increased 1 day after reperfusion. Intraventricular administration of SB203580 significantly suppressed activation and phosphorylation of cPLA2 and attenuated BBB extravasation and subsequent edema. Moreover, overexpression of copper/zinc-superoxide dismutase remarkably diminished activation and phosphorylation of both p38 MAPK and cPLA2 after reperfusion. These findings suggest that the p38 MAPK/cPLA2 pathway may promote BBB disruption with secondary vasogenic edema and that superoxide anions can stimulate this pathway after ischemia—reperfusion injury.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3