Overexpression of Heat Shock Protein 27 Reduces Cortical Damage after Cerebral Ischemia

Author:

van der Weerd Louise12,Tariq Akbar Mohammed3,Aron Badin Romina12,Valentim Lauren M2,Thomas David L4,Wells Dominic J3,Latchman David S2,Gadian David G1,Lythgoe Mark F5,de Belleroche Jackie S3

Affiliation:

1. RCS Unit of Biophysics, Institute of Child Health, University College London, London, UK

2. Medical Molecular Biology Unit, Institute of Child Health, University College London, London, UK

3. Division of Neuroscience and Mental Health, Department of Cellular and Molecular Neuroscience, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London, UK

4. The Advanced Magnetic Resonance Imaging Group, Department of Medical Physics and Bioengineering, University College London, London, UK

5. Centre for Advanced Biomedical Imaging, Department of Medicine, University College London, London, UK

Abstract

Heat shock protein 27 (HSP27) has a major role in mediating survival responses to a range of central nervous system insults, functioning as a protein chaperone, an antioxidant, and through inhibition of cell death pathways. We have used transgenic mice overexpressing HSP27 (HSP27tg) to examine the role of HSP27 in cerebral ischemia, using model of permanent middle cerebral artery occlusion (MCAO). Infarct size was evaluated using multislice T2-weighted anatomical magnetic resonance imaging (MRI) after 24 h. A significant reduction of 30% in infarct size was detected in HSP27tg animals compared with wild-type (WT) littermates. To gain some insight into the mechanisms contributing to cell death and its attenuation by HSP27, we monitored the effect of induction of c-jun and ATF3 on tissue survival in MCAO and their effects on the expression of endogenous mouse HSP25 and HSP70. It is important that, the c-jun induction seen at 4 h tended to be localized to regions that were salvageable in HSP27tg mice but became infarcted in WT animals. Our results provide support for the powerful neuroprotective effects of HSP27 in cerebral ischemia.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3