Author:
Garcia-Cruz A.,Ahmad O. S.,Alanazi K.,Piletska E.,Piletsky S. A.
Abstract
AbstractThe present research describes the design of robust electrochemical sensors based on electro-responsive molecularly imprinted polymer nanoparticles (e-MIPs). The e-MIPs, tagged with a redox probe, combine both recognition and reporting functions. This system replaces enzyme-mediator pairs used in traditional biosensors. The analyte recognition process relies on the generic actuation phenomenon when the polymer conformation of e-MIPs is changing in response to the presence of the template analyte. The analyte concentration is measured using voltammetric methods. In an exemplification of this technology, electrochemical sensors were developed for the determination of concentrations of trypsin, glucose, paracetamol, C4-homoserine lactone, and THC. The present technology allows for the possibility of producing generic, inexpensive, and robust disposable sensors for clinical, environmental, and forensic applications.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献