Visualizing hypoxic modulation of beta cell secretions via a sensor augmented oxygen gradient

Author:

Duan KaiORCID,Zhou Mengyang,Wang Yong,Oberholzer Jose,Lo Joe F.

Abstract

AbstractOne distinct advantage of microfluidic-based cell assays is their scalability for multiple concentrations or gradients. Microfluidic scaling can be extremely powerful when combining multiple parameters and modalities. Moreover, in situ stimulation and detection eliminates variability between individual bioassays. However, conventional microfluidics must combat diffusion, which limits the spatial distance and time for molecules traveling through microchannels. Here, we leveraged a multilayered microfluidic approach to integrate a novel oxygen gradient (0–20%) with an enhanced hydrogel sensor to study pancreatic beta cells. This enabled our microfluidics to achieve spatiotemporal detection that is difficult to achieve with traditional microfluidics. Using this device, we demonstrated the in situ detection of calcium, insulin, and ATP (adenosine triphosphate) in response to glucose and oxygen stimulation. Specifically, insulin was quantified at levels as low as 25 pg/mL using our imaging technique. Furthermore, by analyzing the spatial detection data dynamically over time, we uncovered a new relationship between oxygen and beta cell oscillations. We observed an optimum oxygen level between 10 and 12%, which is neither hypoxic nor normoxic in the conventional cell culture sense. These results provide evidence to support the current islet oscillator model. In future applications, this spatial microfluidic technique can be adapted for discrete protein detection in a robust platform to study numerous oxygen-dependent tissue dysfunctions.

Funder

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3