Multiple virus sorting based on aptamer-modified microspheres in a TSAW device

Author:

Liu Xianglian,Chen Xuan,Dong Yangchao,Zhang Chuanyu,Qu Xiaoli,Lei Yingfeng,Jiang Zhuangde,Wei XueyongORCID

Abstract

AbstractDue to the overlapping epidemiology and clinical manifestations of flaviviruses, differential diagnosis of these viral diseases is complicated, and the results are unreliable. There is perpetual demand for a simplified, sensitive, rapid and inexpensive assay with less cross-reactivity. The ability to sort distinct virus particles from a mixture of biological samples is crucial for improving the sensitivity of diagnoses. Therefore, we developed a sorting system for the subsequent differential diagnosis of dengue and tick-borne encephalitis in the early stage. We employed aptamer-modified polystyrene (PS) microspheres with different diameters to specifically capture dengue virus (DENV) and tick-borne encephalitis virus (TBEV), and utilized a traveling surface acoustic wave (TSAW) device to accomplish microsphere sorting according to particle size. The captured viruses were then characterized by laser scanning confocal microscopy (LSCM), field emission scanning electron microscopy (FE-SEM) and reverse transcription-polymerase chain reaction (RT‒PCR). The characterization results indicated that the acoustic sorting process was effective and damage-free for subsequent analysis. Furthermore, the strategy can be utilized for sample pretreatment in the differential diagnosis of viral diseases.

Funder

National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3