Author:
Supraja Patta,Singh Vikrant,Vanjari Siva Rama Krishna,Govind Singh Shiv
Abstract
AbstractIn this study we have reported the design and development of a facile, sensitive, selective, and label-free electrochemical sensing platform for the detection of atrazine based on MWCNT-embedded ZnO nanofibers. Electrospun nanofibers were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), UV-Visible spectroscope (UV-VIS), and Fourier-transform infrared spectroscope (FTIR). Electrochemical properties of MWCNT-ZnO nanofiber-modified electrodes were assessed using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Binding event of atrazine to anti-atrazine antibody, which immobilized on nanofiber-modified electrode via EDC and NHS chemistry, was transduced with EIS. Due to high conductivity, surface area, and low bandgap of MWCNT-ZnO nanofibers, we have achieved the sensitivity and limit of detection (LoD) of sensor as 21.61 (KΩ μg−1 mL−1) cm−2 and 5.368 zM for a wide detection range of 10 zM–1 µM. The proposed immunosensing platform has good stability, selectivity, repeatability, and reproducibility, and are less prone to interference.
Funder
Department of Science and Technology, Ministry of Science and Technology
Department of Electronics and Information Technology (DEITY), Ministry of Communications and Information Technology, the Government of India.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献