Microparticles with tunable, cell-like properties for quantitative acoustic mechanophenotyping

Author:

Dubay RyanORCID,Darling Eric M.ORCID,Fiering JasonORCID

Abstract

AbstractMechanical properties of biological cells have been shown to correlate with their biomolecular state and function, and therefore methods to measure these properties at scale are of interest. Emerging microfluidic technologies can measure the mechanical properties of cells at rates over 20,000 cells/s, which is more than four orders of magnitude faster than conventional instrumentation. However, precise and repeatable means to calibrate and test these new tools remain lacking, since cells themselves are by nature variable. Commonly, microfluidic tools use rigid polymer microspheres for calibration because they are widely available in cell-similar sizes, but conventional microspheres do not fully capture the physiological range of other mechanical properties that are equally important to device function (e.g., elastic modulus and density). Here, we present for the first time development of monodisperse polyacrylamide microparticles with both tunable elasticity and tunable density. Using these size, elasticity, and density tunable particles, we characterized a custom acoustic microfluidic device that makes single-cell measurements of mechanical properties. We then applied the approach to measure the distribution of the acoustic properties within samples of human leukocytes and showed that the system successfully discriminates lymphocytes from other leukocytes. This initial demonstration shows how the tunable microparticles with properties within the physiologically relevant range can be used in conjunction with microfluidic devices for efficient high-throughput measurements of mechanical properties at single-cell resolution.

Funder

Draper Scholars Program: Draper (Cambridge, MA) provides full funding for a graduate student up to 5 years for PhD programs. Contributing author Ryan Dubay was a Draper Scholar during this work.

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3