Bubble entrapment during the recoil of an impacting droplet

Author:

Nguyen Thanh-Vinh,Ichiki Masaaki

Abstract

AbstractWhen a droplet impacts a (super-)hydrophobic surface, there is a range of Weber numbers within which bubble entrapment will occur during droplet recoil due to closure of the air cavity developed when the droplet spreads out during the impact. In this study, we studied bubble entrapment using a microelectromechanical system (MEMS)-based acoustic sensor fabricated on a substrate. We found that bubble entrapment is followed by an acoustic vibration that can be detected by the sensor. Moreover, the frequency of the vibration is inversely proportional to the radius of the droplet, which indicates that this vibration is the resonant oscillation of the bubble. Therefore, the MEMS-based acoustic sensor can be used not only to detect but also to measure the size of the entrapped bubble. Finally, we demonstrated that it is possible to prevent bubble formation by allowing the air to escape to the underside of the droplet contact area. This can be done by creating through-holes on the substrate or decorating the substrate with sufficiently large textures.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3