Abstract
AbstractMiniaturized gas pumps based on electromagnetic effect have been intensively studied and widely applied in industries. However, the electromagnetic effect-based gas pumps normally have large sizes, high levels of noises and high power consumption, thus they are not suitable for wearable/portable applications. Herein, we propose a high-flowrate and high-pressure load valveless piezoelectric micropump with dimensions of 16 mm*16 mm*5 mm. The working frequency, vibration mode and displacement of the piezoelectric actuator, the velocity of gas flow, and the volume flowrate of the micropump are analyzed using the finite element analysis method. The maximum vibration amplitude of the piezoelectric actuator reaches ~29.4 μm. The output gas flowrate of the pump is approximately 135 mL/min, and the maximum output pressure exceeds 40 kPa. Then, a prototype of the piezoelectric micropump is fabricated. Results show that performance of the micropump is highly consistent with the numerical analysis with a high flowrate and pressure load, demonstrated its great potential for wearable/portable applications, especially for blood pressure monitoring.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献