Abstract
AbstractMEMS resonators exhibit rich dynamic behaviors under the internal resonance regime. In this work, we present a novel MEMS bifurcation sensor that exploits frequency unlocking due to a 1:3 internal resonance between two electrostatically coupled micro-resonators. The proposed detection mechanism allows the sensor to operate in binary (digital) and analog modes, depending on whether the sensor merely detects a significant jump event in the peak frequency upon unlocking or measures the shift in the peak frequency after unlocking and uses it in conjunction with a calibration curve to estimate the corresponding change in stimulus. We validate the success of this sensor paradigm by experimentally demonstrating charge detection. High charge resolutions are achieved in binary mode, up to 0.137 fC, and in analog mode, up to 0.01 fC. The proposed binary sensor enables extraordinarily high detection resolutions due to the excellent frequency stability under internal resonance and the high signal-to-noise ratio of the shift in peak frequency. Our findings offer new opportunities for high-performance ultrasensitive sensors.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献