Wearable multi-sensing double-chain thermoelectric generator

Author:

Wen Dan-Liang,Deng Hai-Tao,Liu Xin,Li Guo-Ke,Zhang Xin-Ran,Zhang Xiao-ShengORCID

Abstract

AbstractWearable electronics play a crucial role in advancing the rapid development of artificial intelligence, and as an attractive future vision, all-in-one wearable microsystems integrating powering, sensing, actuating and other functional components on a single chip have become an appealing tendency. Herein, we propose a wearable thermoelectric generator (ThEG) with a novel double-chain configuration to simultaneously realize sustainable energy harvesting and multi-functional sensing. In contrast to traditional single-chain ThEGs with the sole function of thermal energy harvesting, each individual chain of the developed double-chain thermoelectric generator (DC-ThEG) can be utilized to scavenge heat energy, and moreover, the combination of the two chains can be employed as functional sensing electrodes at the same time. The mature mass-fabrication technology of screen printing was successfully introduced to print n-type and p-type thermoelectric inks atop a polymeric substrate to form thermocouples to construct two independent chains, which makes this DC-ThEG flexible, high-performance and cost-efficient. The emerging material of silk fibroin was employed to cover the gap of the fabricated two chains to serve as a functional layer for sensing the existence of liquid water molecules in the air and the temperature. The powering and sensing functions of the developed DC-ThEG and their interactions were systematically studied via experimental measurements, which proved the DC-ThEG to be a robust multi-functional power source with a 151 mV open-circuit voltage. In addition, it was successfully demonstrated that this DC-ThEG can convert heat energy to achieve a 3.3 V output, matching common power demands of wearable electronics, and harvest biothermal energy to drive commercial electronics (i.e., a calculator). The integration approach of powering and multi-functional sensing based on this new double-chain configuration might open a new chapter in advanced thermoelectric generators, especially in the applications of all-in-one self-powered microsystems.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3