Ultralow detection limit and ultrafast response/recovery of the H2 gas sensor based on Pd-doped rGO/ZnO-SnO2 from hydrothermal synthesis

Author:

Zhang XinxiaoORCID,Sun Jianhai,Tang Kangsong,Wang Hairong,Chen Tingting,Jiang Kaisheng,Zhou Tianye,Quan Hao,Guo Ruihua

Abstract

AbstractHydrogen (H2) sensors are of great significance in hydrogen energy development and hydrogen safety monitoring. However, achieving fast and effective detection of low concentrations of hydrogen is a key problem to be solved in hydrogen sensing. In this work, we combined the excellent gas sensing properties of tin(IV) oxide (SnO2) and zinc oxide (ZnO) with the outstanding electrical properties of reduced graphene oxide (rGO) and prepared palladium (Pd)-doped rGO/ZnO-SnO2 nanocomposites by a hydrothermal method. The crystal structure, structural morphology, and elemental composition of the material were characterized by FE-SEM, TEM, XRD, XPS, Raman spectroscopy, and N2 adsorption–desorption. The results showed that the Pd-doped ZnO-SnO2 composites were successfully synthesized and uniformly coated on the surface of the rGO. The hydrogen gas sensing performance of the sensor prepared in this work was investigated, and the results showed that, compared with the pure Pd-doped ZnO-SnO2 sensor, the Pd-doped rGO/ZnO-SnO2 sensor modified with 3 wt% rGO had better hydrogen (H2)-sensing response of 9.4–100 ppm H2 at 380 °C. In addition, this sensor had extremely low time parameters (the response time and recovery time for 100 ppm H2 at 380 °C were 4 s and 8 s, respectively) and an extremely low detection limit (50 ppb). Moreover, the sensor exhibited outstanding repeatability and restoration. According to the analysis of the sensing mechanism of this nanocomposite, the enhanced sensing performance of the Pd-doped rGO/ZnO-SnO2 sensor is mainly due to the heterostructure of rGO, ZnO, and SnO2, the excellent electrical and physical properties of rGO and the synergy between rGO and Pd.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3