Employing electrochemically derived pH gradients for Lab-on-PCB protein preconcentration devices

Author:

Maxted Grace,Estrela PedroORCID,Moschou Despina

Abstract

AbstractProtein preconcentration is an essential sample preparation step for analysis in which the targeted proteins exist in low concentrations, such as bodily fluids, water, or wastewater. Nonetheless, very few practical implementations of miniaturized protein preconcentration devices have been demonstrated in practice, and even fewer have been integrated with other microanalytical steps. Existing approaches rely heavily on additional chemicals and reagents and introduce complexity to the overall assay. In this paper, we propose a novel miniaturized isoelectric focusing-based protein preconcentration screening device based on electrochemically derived pH gradients rather than existing chemical reagent approaches. In this way, we reduce the need for additional chemical reagents to zero while enabling device incorporation in a seamlessly integrated full protein analysis microsystem via Lab-on-PCB technology. We apply our previously presented Lab-on-PCB approach to quantitatively control the pH of a solution in the vicinity of planar electrodes using electrochemical acid generation through redox-active self-assembled monolayers. The presented device comprises a printed circuit board with an array of gold electrodes that were functionalized with 4-aminothiophenol; this formed a self-assembled monolayer that was electropolymerized to improve its electrochemical reversibility. Protein preconcentration was performed in two configurations. The first was open and needed the use of a holder to suspend a well of fluid above the electrodes; the second used microfluidic channels to enclose small volumes of fluid. Reported here are the resulting data for protein preconcentration in both these forms, with a quantitative concentration factor shown for the open form and qualitative proof shown for the microfluidic.

Funder

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3