Gas-assisted microfluidic step-emulsification for generating micron- and submicron-sized droplets

Author:

Huang BiaoORCID,Ge XinjinORCID,Rubinstein Boris Y.ORCID,Chen XianchunORCID,Wang LuORCID,Xie Huiying,Leshansky Alexander M.ORCID,Li ZhenzhenORCID

Abstract

AbstractMicron- and submicron-sized droplets have extensive applications in biomedical diagnosis and drug delivery. Moreover, accurate high-throughput analysis requires a uniform droplet size distribution and high production rates. Although the previously reported microfluidic coflow step-emulsification method can be used to generate highly monodispersed droplets, the droplet diameter (d) is constrained by the microchannel height (b), $$d\gtrsim 3b$$ d 3 b , while the production rate is limited by the maximum capillary number of the step-emulsification regime, impeding emulsification of highly viscous liquids. In this paper, we report a novel, gas-assisted coflow step-emulsification method, where air serves as the innermost phase of a precursor hollow-core air/oil/water emulsion. Air gradually diffuses out, producing oil droplets. The size of the hollow-core droplets and the ultrathin oil layer thickness both follow the scaling laws of triphasic step-emulsification. The minimal droplet size attains $$d\approx 1.7b$$ d 1.7 b , inaccessible in standard all-liquid biphasic step-emulsification. The production rate per single channel is an order-of-magnitude higher than that in the standard all-liquid biphasic step-emulsification and is also superior to alternative emulsification methods. Due to low gas viscosity, the method can also be used to generate micron- and submicron-sized droplets of high-viscosity fluids, while the inert nature of the auxiliary gas offers high versatility.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3