A tunable ferroelectric based unreleased RF resonator

Author:

He Yanbo,Bahr Bichoy,Si MengweiORCID,Ye Peide,Weinstein Dana

Abstract

AbstractThis paper introduces the first tunable ferroelectric capacitor (FeCAP)-based unreleased RF MEMS resonator, integrated seamlessly in Texas Instruments’ 130 nm Ferroelectric RAM (FeRAM) technology. The designs presented here are monolithically integrated in solid-state CMOS technology, with no post-processing or release step typical of other MEMS devices. An array of FeCAPs in this complementary metal-oxide-semiconductor (CMOS) technology’s back-end-of-line (BEOL) process were used to define the acoustic resonance cavity as well as the electromechanical transducers. To achieve high quality factor (Q) of the resonator, acoustic waveguiding for vertical confinement within the CMOS stack is studied and optimized. Additional design considerations are discussed to obtain lateral confinement and suppression of spurious modes. An FeCAP resonator is demonstrated with fundamental resonance at 703 MHz and Q of 1012. This gives a frequency-quality factor product $$f \cdot Q = 7.11 \times 10^{11}$$fQ=7.11×1011 which is 1.6× higher than the most state-of-the-art Pb(Zr,Ti)O3 (PZT) resonators. Due to the ferroelectric characteristics of the FeCAPs, transduction of the resonator can be switched on and off by adjusting the electric polarization. In this case, the resonance can be turned off completely at ±0.3 V corresponding to the coercive voltage of the constituent FeCAP transducers. These novel switchable resonators may have promising applications in on-chip timing, ad-hoc radio front ends, and chip-scale sensors.

Funder

United States Department of Defense | Defense Advanced Research Projects Agency

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3