Abstract
AbstractThe emerging need for accurate, efficient, inexpensive, and multiparameter monitoring of water quality has led to interest in the miniaturization of benchtop chromatography systems. This paper reports a chip-based ion chromatography (chip-IC) system in which the microvalves, sample channel, packed column, and conductivity detector are all integrated on a polymethylmethacrylate (PMMA) chip. A laser-based bonding technique was developed to guarantee simultaneous robust sealing between the homogeneous and heterogeneous interfaces. A five-electrode-based conductivity detector was presented to improve the sensitivity for nonsuppressed anion detection. Common anions (F−, Cl−, NO3−, and SO42−) were separated in less than 8 min, and a detection limit (LOD) of 0.6 mg L−1 was achieved for SO42−. Tap water was also analyzed using the proposed chip-IC system, and the relative deviations of the quantified concentration were less than 10% when compared with that a commercial IC system.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献