C-MEMS-derived glassy carbon electrochemical biosensors for rapid detection of SARS-CoV-2 spike protein

Author:

Mandal Naresh,Mitra RajaORCID,Pramanick Bidhan

Abstract

AbstractAccording to a World Health Organization (WHO) report, the world has experienced more than 766 million cases of positive SARS-CoV-2 infection and more than 6.9 million deaths due to COVID through May 2023. The WHO declared a pandemic due to the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and the fight against this pandemic is not over yet. Important reasons for virus spread include the lack of detection kits, appropriate detection techniques, delay in detection, asymptomatic cases and failure in mass screening. In the last 3 years, several researchers and medical companies have introduced successful test kits to detect the infection of symptomatic patients in real time, which was necessary to monitor the spread. However, it is also important to have information on asymptomatic cases, which can be obtained by antibody testing for the SARS-CoV-2 virus. In this work, we developed a simple, advantageous immobilization procedure for rapidly detecting the SARS-CoV-2 spike protein. Carbon-MEMS-derived glassy carbon (GC) is used as the sensor electrode, and the detection is based on covalently linking the SARS-CoV-2 antibody to the GC surface. Glutaraldehyde was used as a cross-linker between the antibody and glassy carbon electrode (GCE). The binding was investigated using Fourier transform infrared spectroscopy (FTIR) characterization and cyclic voltammetric (CV) analysis. Electrochemical impedance spectroscopy (EIS) was utilized to measure the change in total impedance before and after incubation of the SARS-CoV-2 antibody with various concentrations of SARS-CoV-2 spike protein. The developed sensor can sense 1 fg/ml to 1 µg/ml SARS-CoV-2 spike protein. This detection is label-free, and the chances of false positives are minimal. The calculated LOD was ~31 copies of viral RNA/mL. The coefficient of variation (CV) number is calculated from EIS data at 100 Hz, which is found to be 0.398%. The developed sensor may be used for mass screening because it is cost-effective.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3