Abstract
AbstractThe development of multifunctional and reconfigurable metasurfaces capable of manipulating electromagnetic waves has created new opportunities for various exciting applications. Extensive efforts have been applied to exploiting active metasurfaces with properties that can be controlled by externally controlling active components. However, previous approaches have poor switch isolation, power handling limitations due to nonlinear effects, and complex biasing networks. Therefore, dynamically tunable metasurfaces have become a burgeoning field in many research areas. This paper reports a hydrodynamic metasurface (HMS) that can be programmed to realize electromagnetic beam scanning on the azimuth and elevation planes. The proposed HMS platform incorporates four micropumps, each controlling four metasurface elements via microfluidic channels, built into the HMS base. The proposed platform regulates microfluidic flow through micropumps, causing irregularities in incident wave transmission phase. An HMS was built as a proof of concept, and far-field scanning experiments were performed. Numerical and experimental results verify the feasibility of electromagnetic beam scanning using a hydrodynamic metasurface. This work advances metasurface research, with very high potential for wide-ranging application and a promising route for replacing bulky cascading active components.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献