Streamlined and on-demand preparation of mRNA products on a universal integrated platform

Author:

Wei HongjuanORCID,Rong ZhenORCID,Liu Liyan,Sang Ye,Yang Jing,Wang Shengqi

Abstract

AbstractVaccines are used to protect human beings from various diseases. mRNA vaccines simplify the development process and reduce the production cost of conventional vaccines, making it possible to respond rapidly to acute and severe diseases, such as coronavirus disease 2019. In this study, a universal integrated platform for the streamlined and on-demand preparation of mRNA products directly from DNA templates was established. Target DNA templates were amplified in vitro by a polymerase chain reaction module and transcribed into mRNA sequences, which were magnetically purified and encapsulated in lipid nanoparticles. As an initial example, enhanced green fluorescent protein (eGFP) was used to test the platform. The expression capacity and efficiency of the products were evaluated by transfecting them into HEK-293T cells. The batch production rate was estimated to be 200–300 μg of eGFP mRNA in 8 h. Furthermore, an mRNA vaccine encoding the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein was produced by this platform. The proposed integrated platform shows advantages for the universal and on-demand preparation of mRNA products, offering the potential to facilitate broad access to mRNA technology and enable the development of mRNA products, including the rapid supply of new mRNA-based vaccines in pandemic situations and personalized mRNA-based therapies for oncology and chronic infectious diseases, such as viral hepatitis and acquired immune deficiency syndrome.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to RNA Vaccines Post COVID-19;Methods in Molecular Biology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3