Abstract
AbstractOne of the biggest challenges in microscale additive manufacturing is the production of three-dimensional, microscale metal parts with a high enough throughput to be relevant for commercial applications. This paper presents a new microscale additive manufacturing process called microscale selective laser sintering (μ-SLS) that can produce true 3D metal parts with sub-5 μm resolution and a throughput of greater than 60 mm3/hour. In μ-SLS, a layer of metal nanoparticle ink is first coated onto a substrate using a slot die coating system. The ink is then dried to produce a uniform nanoparticle layer. Next, the substrate is precisely positioned under an optical subsystem using a set of coarse and fine nanopositioning stages. In the optical subsystem, laser light that has been patterned using a digital micromirror array is used to heat and sinter the nanoparticles into the desired patterns. This set of steps is then repeated to build up each layer of the 3D part in the μ-SLS system. Overall, this new technology offers the potential to overcome many of the current limitations in microscale additive manufacturing of metals and become an important process in microelectronics packaging applications.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Reference68 articles.
1. Bourell, D. L. Perspectives on additive manufacturing. Annu. Rev. Mater. Res. 46, 1–18 (2016).
2. Zadpoor, A. A. & Malda, J. Additive manufacturing of biomaterials, tissues, and organs. Ann. Biomed. Eng. 45, 1–11 (2017).
3. Liu, R., Wang, Z., Sparks, T., Liou, F. & Newkirk, J. Aerospace applications of laser additive manufacturing. Laser Additive Manufacturing: Materials, Design, Technologies, and Applications (Elsevier Ltd, 2016).
4. Cho, D.-W. et al. Related content Organ Printing: dispensing-based 3D printing additive manufacturing of polymer melts for implantable medical devices and scaffolds. https://doi.org/10.1088/1758-5090/aa7279 (2017).
5. Giffi, C. A., Gangula, B & Illinda, P. 3D opportunity in the automotive industry. Deloitte Univ. Press 3D opportunity in the automotive industry. (2014).
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献