Exploring the nonlinear piezoresistive effect of 4H-SiC and developing MEMS pressure sensors for extreme environments

Author:

Wu Chen,Fang XudongORCID,Kang Qiang,Fang Ziyan,Wu Junxia,He Hongtao,Zhang Dong,Zhao Libo,Tian Bian,Maeda Ryutaro,Jiang Zhuangde

Abstract

AbstractMicroelectromechanical system (MEMS) pressure sensors based on silicon are widely used and offer the benefits of miniaturization and high precision. However, they cannot easily withstand high temperatures exceeding 150 °C because of intrinsic material limits. Herein, we proposed and executed a systematic and full-process study of SiC-based MEMS pressure sensors that operate stably from −50 to 300 °C. First, to explore the nonlinear piezoresistive effect, the temperature coefficient of resistance (TCR) values of 4H-SiC piezoresistors were obtained from −50 to 500 °C. A conductivity variation model based on scattering theory was established to reveal the nonlinear variation mechanism. Then, a piezoresistive pressure sensor based on 4H-SiC was designed and fabricated. The sensor shows good output sensitivity (3.38 mV/V/MPa), accuracy (0.56% FS) and low temperature coefficient of sensitivity (TCS) (−0.067% FS/°C) in the range of −50 to 300 °C. In addition, the survivability of the sensor chip in extreme environments was demonstrated by its anti-corrosion capability in H2SO4 and NaOH solutions and its radiation tolerance under 5 W X-rays. Accordingly, the sensor developed in this work has high potential to measure pressure in high-temperature and extreme environments such as are faced in geothermal energy extraction, deep well drilling, aeroengines and gas turbines.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3