Author:
Chen Xuanqi,Wan Hao,Guo Rui,Wang Xinpeng,Wang Yang,Jiao Caicai,Sun Kang,Hu Liang
Abstract
AbstractIntegrated electrochemical sensing platforms in wearable devices have great prospects in biomedical applications. However, traditional electrochemical platforms are generally fabricated on airtight printed circuit boards, which lack sufficient flexibility, air permeability, and conformability. Liquid metals at room temperature with excellent mobility and electrical conductivity show high promise in flexible electronics. This paper presents a miniaturized liquid metal-based flexible electrochemical detection system on fabric, which is intrinsically flexible, air-permeable, and conformable to the body. Taking advantage of the excellent fluidity and electrical connectivity of liquid metal, a double-layer circuit is fabricated that significantly miniaturizes the size of the whole system. The linear response, time stability, and repeatability of this system are verified by resistance, stability, image characterization, and potassium ferricyanide tests. Finally, glucose in sweat can be detected at the millimolar level using this sensing system, which demonstrates its great potential for wearable and portable detection in biomedical fields, such as health monitoring and point-of-care testing.
Funder
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献