Multimodal chemo-/magneto-/phototaxis of 3G CNT-bots to power fuel cells

Author:

Mitra ShirsenduORCID,Roy Nirmal,Maity Surjendu,Bandyopadhyay DipankarORCID

Abstract

AbstractWe report the development of a 3G microswimmer, namely, CNT-bot, capable of undergoing acid-, alkali-, magneto- and phototaxis inside acidic or alkaline baths of peroxide fuel and/or water. The use of carboxyl-functionalised multi-walled carbon nanotubes (MWCNTs) facilitated the propulsion of CNT-bots in an alkaline-water solution by ejecting carbon-dioxide bubbles. Furthermore, doping of magnetite nanoparticles (FeONPs), ferrous ions (Fe2+) and titanium dioxide nanoparticles (TiONPs) induces magnetic, chemical and photonic modes of propulsion. While FeONPs stimulated magnetotaxis at a rate of up to ~10 body lengths per second under the influence of a bar magnet, chemotaxis of a similar speed in a peroxide fuel was achieved by bubble-propulsion of oxygen gas originating from the Fenton reaction. In addition, the light-stimulated photo-Fenton reaction led to phototaxis of CNT-bots. A thin coating of magnesium imparted a half-faced Janus appearance to the CNT-bots, which facilitated motion in normal or acidic water media through the ejection of hydrogen gas bubbles. This chemotaxis could be transformed into pH-stimulated directional motion by establishing an acid or alkali concentration gradient across the peroxide and/or water baths. The capacity of CNT-bots to produce oxygen (hydrogen) bubbles in peroxide (acidic water) fuel was exploited to power a PEM fuel cell to generate electricity. The pure oxygen and hydrogen gases generated by CNT-bots in separate chambers were fed directly into the fuel cell in which the incessant motions of the particle facilitated the creation and release of the pure gases to achieve on-demand electricity generation. The motor could also induce dye degradation through advanced oxidation owing to the production of intermediate hydroxyl radicals during the Fenton reaction.

Funder

DST | Science and Engineering Research Board

Ministry of Electronics and Information technology

MHRD-IMPRINT Project no 8058

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3