A paper-based microfluidic platform with shape-memory-polymer-actuated fluid valves for automated multi-step immunoassays

Author:

Fu HaoORCID,Song Pengfei,Wu Qiyang,Zhao Chen,Pan Peng,Li Xiao,Li-Jessen Nicole Y. K.,Liu XinyuORCID

Abstract

Abstract Smart fluid manipulation with automatically controlled paper valves will enable automated and multi-step immunoassays on paper-based microfluidic devices. In this work, we present an integrated paper-based microfluidic platform with shape-memory polymer (SMP)-actuated fluid valves capable of automated colorimetric enzyme-linked immunosorbent assays (ELISAs). A single-layer microfluidic paper-based analytical device (μPAD) was designed to store all the reagents on the chip, and sequentially transfer reagents to a paper test zone following a specific ELISA protocol through automatic fluidic flow control by the multiple SMP-actuated valves. The actuation of a paper valve was based on the thermally responsive, duel-state shape transformation of a SMP sheet attached to the root of a paper cantilever beam for driving a hydrophilic paper bridge to connect and disconnect two paper channels. A portable colorimetric reader was developed to control the on-chip valve operations, quantify the colorimetric signal output, display the assay result, and wirelessly transmit the data to a smart phone for the application of telemedicine. Reliable operations of the paper valve and the entire μPAD were demonstrated with success rates of 97% and 93%, respectively. A detection mechanism for valve malfunction was designed and confirmed effective to identify any mal-operation of individual valves, thus rendering our platform reliable in real assays. For device calibration, we conducted direct ELISAs of rabbit IgG in phosphate-buffered saline (PBS), and achieved a low limit of detection (LOD) of 27 pM (comparable to that of standard and paper-based ELISAs). In order to demonstrate the clinical application of our multi-step immunoassay platform, we also conducted sandwich ELISAs to quantify the protein level of an inflammatory cytokine, namely tumor necrosis factor (TNF)-α, in surgically injured laryngeal tissues of rats. The protein levels of TNF-α were shown similar between the conventional and μPAD ELISAs.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Gouvernement du Canada | Canadian Institutes of Health Research

U.S. Department of Health & Human Services | NIH | National Institute on Deafness and Other Communication Disorders

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3