Twisted fiber microfluidics: a cutting-edge approach to 3D spiral devices

Author:

Kato Shunsuke,Carlson Daniel W.,Shen Amy Q.ORCID,Guo YuanyuanORCID

Abstract

AbstractThe development of 3D spiral microfluidics has opened new avenues for leveraging inertial focusing to analyze small fluid volumes, thereby advancing research across chemical, physical, and biological disciplines. While traditional straight microchannels rely solely on inertial lift forces, the novel spiral geometry generates Dean drag forces, eliminating the necessity for external fields in fluid manipulation. Nevertheless, fabricating 3D spiral microfluidics remains a labor-intensive and costly endeavor, hindering its widespread adoption. Moreover, conventional lithographic methods primarily yield 2D planar devices, thereby limiting the selection of materials and geometrical configurations. To address these challenges, this work introduces a streamlined fabrication method for 3D spiral microfluidic devices, employing rotational force within a miniaturized thermal drawing process, termed as mini-rTDP. This innovation allows for rapid prototyping of twisted fiber-based microfluidics featuring versatility in material selection and heightened geometric intricacy. To validate the performance of these devices, we combined computational modeling with microtomographic particle image velocimetry (μTPIV) to comprehensively characterize the 3D flow dynamics. Our results corroborate the presence of a steady secondary flow, underscoring the effectiveness of our approach. Our 3D spiral microfluidics platform paves the way for exploring intricate microflow dynamics, with promising applications in areas such as drug delivery, diagnostics, and lab-on-a-chip systems.

Funder

MEXT | Japan Science and Technology Agency

MEXT | Japan Society for the Promotion of Science

D.W.C. and A.Q.S. acknowledge the support of 407 the Okinawa Institute of Science and Technology Graduate University (OIST) with subsidy funding from the Cabinet Office, Government of Japan

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3