Tunable parity-time symmetry vortex laser from a phase change material-based microcavity

Author:

Su Ying,Fan Hongji,Zhang Shitong,Cao Tun

Abstract

AbstractTraditional light sources cannot emit an electromagnetic (EM) field with an orbital angular momentum (OAM), limiting their applications in modern optics. The recent development of the OAM laser, mainly based on micro- and nanostructures, can satisfy the increasing requirements for on-chip photonics and information capacities. Nevertheless, the photonic structures have fixed parameters that prevent these OAM lasers from being dynamically tuned. Here, we propose tunable vortex lasing from a microring cavity integrated by a phase change material, Ge2Sb2Te5 (GST225). By modulating the complex refractive index to create an exceptional point (EP) to break the degeneracy of whispering gallery modes with opposite orientations, the microlaser working at the EP can impart an artificial angular momentum, thus emitting vortex beams with well-defined OAM. The grating scatter on the edge of the microring can provide efficient vertical radiation. The vortex laser wavelength from the GST225/InGaAsP dual-layered microring cavity can be dynamically tuned by switching the state of GST225 between amorphous and crystalline without changing the microring geometry. We construct an electric-thermal model to show the tuning range of operating wavelengths (EPs) from 1544.5 to 1565.9 nm in ~25 ns. Our study on high-speed tunable PT-symmetry vortex lasers facilitates the next generation of integrated optoelectronic devices for optical computing and communications in both classical and quantum regions.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3