Digital light processing 3D printing for microfluidic chips with enhanced resolution via dosing- and zoning-controlled vat photopolymerization

Author:

Luo Zhiming,Zhang Haoyue,Chen Runze,Li Hanting,Cheng Fang,Zhang Lijun,Liu Jia,Kong Tiantian,Zhang Yang,Wang Huanan

Abstract

AbstractConventional manufacturing techniques to fabricate microfluidic chips, such as soft lithography and hot embossing process, have limitations that include difficulty in preparing multiple-layered structures, cost- and labor-consuming fabrication process, and low productivity. Digital light processing (DLP) technology has recently emerged as a cost-efficient microfabrication approach for the 3D printing of microfluidic chips; however, the fabrication resolution for microchannels is still limited to sub-100 microns at best. Here, we developed an innovative DLP printing strategy for high resolution and scalable microchannel fabrication by dosing- and zoning-controlled vat photopolymerization (DZC-VPP). Specifically, we proposed a modified mathematical model to precisely predict the accumulated UV irradiance for resin photopolymerization, thereby providing guidance for the fabrication of microchannels with enhanced resolution. By fine-tuning the printing parameters, including optical irradiance, exposure time, projection region, and step distance, we can precisely tailor the penetration irradiance stemming from the photopolymerization of the neighboring resin layers, thereby preventing channel blockage due to UV overexposure or compromised bonding stability owing to insufficient resin curing. Remarkably, this strategy can allow the preparation of microchannels with cross-sectional dimensions of 20 μm × 20 μm using a commercial printer with a pixel size of 10 μm × 10 μm; this is significantly higher resolution than previous reports. In addition, this method can enable the scalable and biocompatible fabrication of microfluidic drop-maker units that can be used for cell encapsulation. In general, the current DZC-VPP method can enable major advances in precise and scalable microchannel fabrication and represents a significant step forward for widespread applications of microfluidics-based techniques in biomedical fields.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A mini review on recent progress of microfluidic systems for antibody development;Journal of Diabetes & Metabolic Disorders;2024-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3