Outperforming piezoelectric ultrasonics with high-reliability single-membrane CMUT array elements

Author:

Dew Eric B.ORCID,Kashani Ilkhechi Afshin,Maadi Mohammad,Haven Nathaniel J. M.,Zemp Roger J.

Abstract

AbstractIt has long been hypothesized that capacitive micromachined ultrasound transducers (CMUTs) could potentially outperform piezoelectric technologies. However, challenges with dielectric charging, operational hysteresis, and transmit sensitivity have stood as obstacles to these performance outcomes. In this paper, we introduce key architectural features to enable high-reliability CMUTs with enhanced performance. Typically, a CMUT element in an array is designed with an ensemble of smaller membranes oscillating together to transmit or detect ultrasound waves. However, this approach can lead to unreliable behavior and suboptimal transmit performance if these smaller membranes oscillate out of phase or collapse at different voltages. In this work, we designed CMUT array elements composed of a single long rectangular membrane, with the aim of improving the output pressure and electromechanical efficiency. We compare the performance of three different modifications of this architecture: traditional contiguous dielectric, isolated isolation post (IIP), and insulated electrode-post (EP) CMUTs. EPs were designed to improve performance while also imparting robustness to charging and minimization of hysteresis. To fabricate these devices, a wafer-bonding process was developed with near-100% bonding yield. EP CMUT elements achieved electromechanical efficiency values as high as 0.95, higher than values reported with either piezoelectric transducers or previous CMUT architectures. Moreover, all investigated CMUT architectures exhibited transmit efficiency 2–3 times greater than published CMUT or piezoelectric transducer elements in the 1.5–2.0 MHz range. The EP and IIP CMUTs demonstrated considerable charging robustness, demonstrating minimal charging over 500,000 collapse-snap-back actuation cycles while also mitigating hysteresis. Our proposed approach offers significant promise for future ultrasonic applications.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Gouvernement du Canada | Canadian Institutes of Health Research

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3