A tip-coupled, two-cantilever, non-resonant microsystem for direct measurement of liquid viscosity

Author:

Tiwari SudhanshuORCID,Dangi Ajay,Pratap Rudra

Abstract

AbstractWe report a non-resonant piezoelectric microelectromechanical cantilever system for the measurement of liquid viscosity. The system consists of two PiezoMEMS cantilevers in-line, with their free ends facing each other. The system is immersed in the fluid under test for viscosity measurement. One of the cantilevers is actuated using the embedded piezoelectric thin film to oscillate at a pre-selected non-resonant frequency. The second cantilever, the passive one, starts to oscillate due to the fluid-mediated energy transfer. The relative response of the passive cantilever is used as the metric for the fluid’s kinematic viscosity. The fabricated cantilevers are tested as viscosity sensors by carrying out experiments in fluids with different viscosities. The viscometer can measure viscosity at a single frequency of choice, and hence some important considerations for frequency selection are discussed. A discussion on the energy coupling between the active and the passive cantilevers is presented. The novel PiezoMEMS viscometer architecture proposed in this work will overcome several challenges faced by state-of-the-art resonance MEMS viscometers, by enabling faster and direct measurement, straightforward calibration, and the possibility of shear rate-dependent viscosity measurement.

Funder

DST | Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PZT-based Multi-Mode Cantilever for Viscosity Sensing;2023 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS);2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3