Abstract
AbstractThere is growing interest in the clinical application of polygenic scores as their predictive utility increases for a range of health-related phenotypes. However, providing polygenic score predictions on the absolute scale is an important step for their safe interpretation. We have developed a method to convert polygenic scores to the absolute scale for binary and normally distributed phenotypes. This method uses summary statistics, requiring only the area-under-the-ROC curve (AUC) or variance explained (R2) by the polygenic score, and the prevalence of binary phenotypes, or mean and standard deviation of normally distributed phenotypes. Polygenic scores are converted using normal distribution theory. We also evaluate methods for estimating polygenic score AUC/R2from genome-wide association study (GWAS) summary statistics alone. We validate the absolute risk conversion and AUC/R2estimation using data for eight binary and three continuous phenotypes in the UK Biobank sample. When the AUC/R2of the polygenic score is known, the observed and estimated absolute values were highly concordant. Estimates of AUC/R2from the lassosum pseudovalidation method were most similar to the observed AUC/R2values, though estimated values deviated substantially from the observed for autoimmune disorders. This study enables accurate interpretation of polygenic scores using only summary statistics, providing a useful tool for educational and clinical purposes. Furthermore, we have created interactive webtools implementing the conversion to the absolute (https://opain.github.io/GenoPred/PRS_to_Abs_tool.html). Several further barriers must be addressed before clinical implementation of polygenic scores, such as ensuring target individuals are well represented by the GWAS sample.
Funder
RCUK | Medical Research Council
DH | National Institute for Health Research
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献