Confirmation and expansion of the phenotype of the TCEAL1-related neurodevelopmental disorder

Author:

Albuainain Fatimah,Shi YuweiORCID,Lor-Zade Sarah,Hüffmeier UlrikeORCID,Pauly MelissaORCID,Reis AndréORCID,Faivre Laurence,Maraval JulienORCID,Bruel Ange-Line,Them Frédéric Tran MauORCID,Haack Tobias B.,Grasshoff Ute,Horber Veronka,Schot RachelORCID,van Slegtenhorst Marjon,Wilke Martina,Barakat Tahsin StefanORCID

Abstract

AbstractNumerous contiguous gene deletion syndromes causing neurodevelopmental disorders have previously been defined using cytogenetics for which only in the current genomic era the disease-causing genes have become elucidated. One such example is deletion at Xq22.2, previously associated with a neurodevelopmental disorder which has more recently been found to be caused by de novo loss-of-function variants in TCEAL1. So far, a single study reported six unrelated individuals with this monogenetic disorder, presenting with syndromic features including developmental delay especially affecting expressive speech, intellectual disability, autistic-like behaviors, hypotonia, gait abnormalities and mild facial dysmorphism, in addition to ocular, gastrointestinal, and immunologic abnormalities. Here we report on four previously undescribed individuals, including two adults, with de novo truncating variants in TCEAL1, identified through trio exome or genome sequencing, further delineating the phenotype of the TCEAL1-related disorder. Whereas overall we identify similar features compared to the original report, we also highlight features in our adult individuals including hyperphagia, obesity, and endocrine abnormalities including hyperinsulinemia, hyperandrogenemia, and polycystic ovarian syndrome. X chromosome inactivation and RNA-seq studies further provide functional insights in the molecular mechanisms. Together this report expands the phenotypic and molecular spectrum of the TCEAL1-related disorder which will be useful for counseling of newly identified individuals and their families.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3