Pathogenic variants causing ABL1 malformation syndrome cluster in a myristoyl-binding pocket and increase tyrosine kinase activity

Author:

Blakes Alexander J. M.ORCID,Gaul Emily,Lam Wayne,Shannon Nora,Knapp Karen M.,Bicknell Louise S.ORCID,Jackson Meremaihi R.,Wade Emma M.ORCID,Robertson StephenORCID,White Susan M.ORCID,Heller Raoul,Chase Andrew,Baralle Diana,Douglas Andrew G. L.ORCID

Abstract

AbstractABL1 is a proto-oncogene encoding a nonreceptor tyrosine kinase, best known in the somatic BCR-ABL fusion gene associated with chronic myeloid leukaemia. Recently, germline missense variants in ABL1 have been found to cause an autosomal dominant developmental syndrome with congenital heart disease, skeletal malformations and characteristic facies. Here, we describe a series of six new unrelated individuals with heterozygous missense variants in ABL1 (including four novel variants) identified via whole exome sequencing. All the affected individuals in this series recapitulate the phenotype of the ABL1 developmental syndrome and additionally we affirm that hearing impairment is a common feature of the condition. Four of the variants cluster in the myristoyl-binding pocket of ABL1, a region critical for auto-inhibitory regulation of the kinase domain. Bio-informatic analysis of transcript-wide conservation and germline/somatic variation reveals that this pocket region is subject to high missense constraint and evolutionary conservation. Functional work to investigate ABL1 kinase activity in vitro by transient transfection of HEK293T cells with variant ABL1 plasmid constructs revealed increased phosphorylation of ABL1-specific substrates compared to wild-type. The increased tyrosine kinase activity was suppressed by imatinib treatment. This case series of six new patients with germline heterozygous ABL1 missense variants further delineates the phenotypic spectrum of this condition and recognises microcephaly as a common finding. Our analysis supports an ABL1 gain-of-function mechanism due to loss of auto-inhibition, and demonstrates the potential for pharmacological inhibition using imatinib.

Funder

DH | National Institute for Health Research

Bloodwise

Bloodwise Specialist Programme Grant no. 18007

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3