Whole exome sequencing in ADHD trios from single and multi-incident families implicates new candidate genes and highlights polygenic transmission

Author:

Al-Mubarak Bashayer R.ORCID,Omar Aisha,Baz BatoulORCID,Al-Abdulaziz Basma,Magrashi Amna I.,Al-Yemni Eman,Jabaan Amjad,Monies Dorota,Abouelhoda Mohamed,Abebe Dejene,Ghaziuddin Mohammad,Al-Tassan Nada A.

Abstract

AbstractSeveral types of genetic alterations occurring at numerous loci have been described in attention deficit hyperactivity disorder (ADHD). However, the role of rare single nucleotide variants (SNVs) remains under investigated. Here, we sought to identify rare SNVs with predicted deleterious effect that may contribute to ADHD risk. We chose to study ADHD families (including multi-incident) from a population with a high rate of consanguinity in which genetic risk factors tend to accumulate and therefore increasing the chance of detecting risk alleles. We employed whole exome sequencing (WES) to interrogate the entire coding region of 16 trios with ADHD. We also performed enrichment analysis on our final list of genes to identify the overrepresented biological processes. A total of 32 rare variants with predicted damaging effect were identified in 31 genes. At least two variants were detected per proband, most of which were not exclusive to the affected individuals. In addition, the majority of our candidate genes have not been previously described in ADHD including five genes (NEK4, NLE1, PSRC1, PTP4A3, and TMEM183A) that were not previously described in any human condition. Moreover, enrichment analysis highlighted brain-relevant biological themes such as “Glutamatergic synapse”, “Cytoskeleton organization”, and “Ca2+ pathway”. In conclusion, our findings are in keeping with prior studies demonstrating the highly challenging genetic architecture of ADHD involving low penetrance, variable expressivity and locus heterogeneity.

Funder

King Abdulaziz City for Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3