Abstract
AbstractRegion-based genome-wide scans are usually performed by use of a priori chosen analysis regions. Such an approach will likely miss the region comprising the strongest signal and, thus, may result in increased type II error rates and decreased power. Here, we propose a genomic exhaustive scan approach that analyzes all possible subsequences and does not rely on a prior definition of the analysis regions. As a prime instance, we present a computationally ultraefficient implementation using the rare-variant collapsing test for phenotypic association, the genomic exhaustive collapsing scan (GECS). Our implementation allows for the identification of regions comprising the strongest signals in large, genome-wide rare-variant association studies while controlling the family-wise error rate via permutation. Application of GECS to two genomic data sets revealed several novel significantly associated regions for age-related macular degeneration and for schizophrenia. Our approach also offers a high potential to improve genome-wide scans for selection, methylation, and other analyses.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献