Hydrodynamic conditions affect the proteomic profile of marine biofilms formed by filamentous cyanobacterium

Author:

Romeu Maria J.ORCID,Domínguez-Pérez DanyORCID,Almeida Daniela,Morais JoãoORCID,Araújo Mário J.,Osório Hugo,Campos Alexandre,Vasconcelos Vítor,Mergulhão Filipe J.ORCID

Abstract

AbstractProteomic studies on cyanobacterial biofilms can be an effective approach to unravel metabolic pathways involved in biofilm formation and, consequently, obtain more efficient biofouling control strategies. Biofilm development by the filamentous cyanobacterium Toxifilum sp. LEGE 06021 was evaluated on different surfaces, glass and perspex, and at two significant shear rates for marine environments (4 s−1 and 40 s−1). Higher biofilm development was observed at 4 s−1. Overall, about 1877 proteins were identified, and differences in proteome were more noticeable between hydrodynamic conditions than those found between surfaces. Twenty Differentially Expressed Proteins (DEPs) were found between 4 s−1 vs. 40 s−1. On glass, some of these DEPs include phage tail proteins, a carotenoid protein, cyanophynase glutathione-dependent formaldehyde dehydrogenase, and the MoaD/ThiS family protein, while on perspex, DEPs include transketolase, dihydroxy-acid dehydratase, iron ABC transporter substrate-binding protein and protein NusG. This study contributes to developing a standardized protocol for proteomic analysis of filamentous cyanobacterial biofilms. This kind of proteomic analysis can also be useful for different research fields, given the broad spectrum of promising secondary metabolites and added-value compounds produced by cyanobacteria, as well as for the development of new antibiofilm strategies.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3