Gut microbiome responds compositionally and functionally to the seasonal diet variations in wild gibbons

Author:

Li QiORCID,Fei Han-Lan,Luo Zhen-Hao,Gao Shao-MingORCID,Wang Pan-DengORCID,Lan Li-Ying,Zhao Xin-Feng,Huang Li-NanORCID,Fan Peng-FeiORCID

Abstract

AbstractWild animals may encounter multiple challenges especially food shortage and altered diet composition in their suboptimal ranges. Yet, how the gut microbiome responds to dietary changes remains poorly understood. Prior studies on wild animal microbiomes have typically leaned upon relatively coarse dietary records and individually unresolved fecal samples. Here, we conducted a longitudinal study integrating 514 time-series individually recognized fecal samples with parallel fine-grained dietary data from two Skywalker hoolock gibbon (Hoolock tianxing) groups populating high-altitude mountainous forests in western Yunnan Province, China. 16S rRNA gene amplicon sequencing showed a remarkable seasonal fluctuation in the gibbons’ gut microbial community structure both across individuals and between the social groups, especially driven by the relative abundances ofLanchnospiraceaeandOscillospiraceaeassociated with fluctuating consumption of leaf. Metagenomic functional profiling revealed that diverse metabolisms associated with cellulose degradation and short-chain fatty acids (SCFAs) production were enriched in the high-leaf periods possibly to compensate for energy intake. Genome-resolved metagenomics further enabled the resolving metabolic capacities associated with carbohydrate breakdown among community members which exhibited a high degree of functional redundancy. Our results highlight a taxonomically and functionally sensitive gut microbiome actively responding to the seasonally shifting diet, facilitating the survival and reproduction of the endangered gibbon species in their suboptimal habitats.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People’s Republic of China

Guangdong Science and Technology Department| GuangDong Basic and Applied Basic Research Foundation.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3