Selective inhibition of the amyloid matrix of Escherichia coli biofilms by a bifunctional microbial metabolite

Author:

Cordisco EstefaníaORCID,Zanor María InésORCID,Moreno Diego MartínORCID,Serra Diego OmarORCID

Abstract

AbstractThe propensity of bacteria to grow collectively in communities known as biofilms and their ability to overcome clinical treatments in this condition has become a major medical problem, emphasizing the need for anti-biofilm strategies. Antagonistic microbial interactions have extensively served as searching platforms for antibiotics, but their potential as sources for anti-biofilm compounds has barely been exploited. By screening for microorganisms that in agar-set pairwise interactions could antagonize Escherichia coli’s ability to form macrocolony biofilms, we found that the soil bacterium Bacillus subtilis strongly inhibits the synthesis of amyloid fibers –known as curli-, which are the primary extracellular matrix (ECM) components of E. coli biofilms. We identified bacillaene, a B. subtilis hybrid non-ribosomal peptide/polyketide metabolite, previously described as a bacteriostatic antibiotic, as the effector molecule. We found that bacillaene combines both antibiotic and anti-curli functions in a concentration-dependent order that potentiates the ecological competitiveness of B. subtilis, highlighting bacillaene as a metabolite naturally optimized for microbial inhibition. Our studies revealed that bacillaene inhibits curli by directly impeding the assembly of the CsgB and CsgA curli subunits into amyloid fibers. Moreover, we found that curli inhibition occurs despite E. coli attempts to reinforce its protective ECM by inducing curli genes via a RpoS-mediated competition sensing response trigged by the threatening presence of B. subtilis. Overall, our findings illustrate the relevance of exploring microbial interactions not only for finding compounds with unknown and unique activities, but for uncovering additional functions of compounds previously categorized as antibiotics.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3