Abstract
AbstractBlack band disease (BBD) in corals is characterized by a distinctive, band-like microbial mat, which spreads across the tissues and often kills infected colonies. The microbial mat is dominated by cyanobacteria but also commonly contains sulfide-oxidizing bacteria (SOB), sulfate-reducing bacteria (SRB), and other microbes. The migration rate in BBD varies across different environmental conditions, including temperature, light, and pH. However, whether variations in the migration rates reflect differences in the microbial consortium within the BBD mat remains unknown. Here, we show that the micro-scale surface structure, bacterial composition, and spatial distribution differed across BBD lesions with different migration rates. The migration rate was positively correlated with the relative abundance of potential SOBs belonging toArcobacteraceaelocalized in the middle layer within the mat and negatively correlated with the relative abundance of other potential SOBs belonging toRhodobacteraceae. Our study highlights the microbial composition in BBD as an important determinant of virulence.
Funder
Academia Sinica
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Microbiology,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献