Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale

Author:

Zhuang Wei,Yu Xiaoli,Hu Ruiwen,Luo Zhiwen,Liu Xingyu,Zheng Xiafei,Xiao FanshuORCID,Peng Yisheng,He QiangORCID,Tian Yun,Yang Tony,Wang Shanquan,Shu LongfeiORCID,Yan QingyunORCID,Wang ChengORCID,He ZhiliORCID

Abstract

AbstractMangrove roots harbor a repertoire of microbial taxa that contribute to important ecological functions in mangrove ecosystems. However, the diversity, function, and assembly of mangrove root-associated microbial communities along a continuous fine-scale niche remain elusive. Here, we applied amplicon and metagenome sequencing to investigate the bacterial and fungal communities among four compartments (nonrhizosphere, rhizosphere, episphere, and endosphere) of mangrove roots. We found different distribution patterns for both bacterial and fungal communities in all four root compartments, which could be largely due to niche differentiation along the root compartments and exudation effects of mangrove roots. The functional pattern for bacterial and fungal communities was also divergent within the compartments. The endosphere harbored more genes involved in carbohydrate metabolism, lipid transport, and methane production, and fewer genes were found to be involved in sulfur reduction compared to other compartments. The dynamics of root-associated microbial communities revealed that 56–74% of endosphere bacterial taxa were derived from nonrhizosphere, whereas no fungal OTUs of nonrhizosphere were detected in the endosphere. This indicates that roots may play a more strictly selective role in the assembly of the fungal community compared to the endosphere bacterial community, which is consistent with the projections established in an amplification-selection model. This study reveals the divergence in the diversity and function of root-associated microbial communities along a continuous fine-scale niche, thereby highlighting a strictly selective role of soil-root interfaces in shaping the fungal community structure in the mangrove root systems.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3