Environmental determinants and demographic influences on global urban microbiomes, antimicrobial resistance and pathogenicity

Author:

Chen Yang,Fu Xi,Ou Zheyuan,Li Jiang,Lin Simiao,Wu Yaoxuan,Wang Xuwei,Deng YiqunORCID,Sun YuORCID

Abstract

AbstractUrban microbiome plays crucial roles in human health and are related to various diseases. The MetaSUB Consortium has conducted the most comprehensive global survey of urban microbiomes to date, profiling microbial taxa/functional genes across 60 cities worldwide. However, the influence of environmental/demographic factors on urban microbiome remains to be elucidated. We collected 35 environmental and demographic characteristics to examine their effects on global urban microbiome diversity/composition by PERMANOVA and regression models. PM10 concentration was the primary determinant factor positively associated with microbial α-diversity (observed species: p = 0.004, β = 1.66, R2 = 0.46; Fisher’s alpha: p = 0.005, β = 0.68, R2 = 0.43), whereas GDP per capita was negatively associated (observed species: p = 0.046, β = −0.70, R2 = 0.10; Fisher’s alpha: p = 0.004, β = −0.34, R2 = 0.22). The β-diversity of urban microbiome was shaped by seven environmental characteristics, including Köppen climate type, vegetation type, greenness fraction, soil type, PM2.5 concentration, annual average precipitation and temperature (PERMANOVA, p < 0.001, R2 = 0.01–0.06), cumulatively accounted for 20.3% of the microbial community variance. Canonical correspondence analysis (CCA) identified microbial species most strongly associated with environmental characteristic variation. Cities in East Asia with higher precipitation showed an increased abundance of Corynebacterium metruchotii, and cities in America with a higher greenness fraction exhibited a higher abundance of Corynebacterium casei. The prevalence of antimicrobial resistance (AMR) genes were negatively associated with GDP per capita and positively associated with solar radiation (p < 0.005). Total pathogens prevalence was positively associated with urban population and negatively associated with average temperature in June (p < 0.05). Our study presents the first comprehensive analysis of the influence of environmental/demographic characteristics on global urban microbiome. Our findings indicate that managing air quality and urban greenness is essential for regulating urban microbial diversity and composition. Meanwhile, socio-economic considerations, particularly reducing antibiotic usage in regions with lower GDP, are paramount in curbing the spread of antimicrobial resistance in urban environments.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3