Smart polarization and spectroscopic holography for real-time microplastics identification

Author:

Zhu Yanmin,Li YuxingORCID,Huang JianqingORCID,Lam Edmund Y.ORCID

Abstract

AbstractOptical microscopy technologies as prominent imaging methods can offer rapid, non-destructive, non-invasive detection, quantification, and characterization of tiny particles. However, optical systems generally incorporate spectroscopy and chromatography for precise material determination, which are usually time-consuming and labor-intensive. Here, we design a polarization and spectroscopic holography to automatically analyze the molecular structure and composition, namely smart polarization and spectroscopic holography (SPLASH). This smart approach improves the evaluation performance by integrating multi-dimensional features, thereby enabling highly accurate and efficient identification. It simultaneously captures the polarization states-related, holographic, and texture features as spectroscopy, without the physical implementation of a spectroscopic system. By leveraging a Stokes polarization mask (SPM), SPLASH achieves simultaneous imaging of four polarization states. Its effectiveness has been demonstrated in the application of microplastics (MP) identification. With machine learning methods, such as ensemble subspace discriminant classifier, k-nearest neighbors classifier, and support vector machine, SPLASH depicts MPs with anisotropy, interference fringes, refractive index, and morphological characteristics and performs explicit discrimination with over 0.8 in value of area under the curve and less than 0.05 variance. This technique is a promising tool for addressing the increasing public concerning issues in MP pollution assessment, MP source identification, and long-term water pollution monitoring.

Funder

Research Grants Council of Hong Kong

Publisher

Springer Science and Business Media LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3