Heavy metal removal from coal fly ash for low carbon footprint cement

Author:

Deng BingORCID,Meng Wei,Advincula Paul A.,Eddy LucasORCID,Ucak-Astarlioglu Mine G.,Wyss Kevin M.,Chen Weiyin,Carter Robert A.,Li Gang,Cheng YiORCID,Nagarajaiah SatishORCID,Tour James M.ORCID

Abstract

AbstractDevelopment of cementitious materials with low carbon footprint is critical for greenhouse gas mitigation. Coal fly ash (CFA) is an attractive diluent additive in cement due to its widespread availability and ultralow cost, but the heavy metals in CFA could leach out over time. Traditional acid washing processes for heavy metal removal suffer from high chemical consumption and high-volume wastewater streams. Here, we report a rapid and water-free process based on flash Joule heating (FJH) for heavy metals removal from CFA. The FJH process ramps the temperature to ~3000 °C within one second by an electric pulse, enabling the evaporative removal of heavy metals with efficiencies of 70–90% for arsenic, cadmium, cobalt, nickel, and lead. The purified CFA is partially substituted in Portland cement, showing enhanced strength and less heavy metal leakage under acid leaching. Techno-economic analysis shows that the process is energy-efficient with the cost of ~$21 ton−1 in electrical energy. Life cycle analysis reveals the reuse of CFA in cement reduces greenhouse gas emissions by ~30% and heavy metal emissions by ~41%, while the energy consumption is balanced, when compared to landfilling. The FJH strategy also works for decontamination of other industrial wastes such as bauxite residue.

Funder

United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research

United States Department of Defense | United States Army | US Army Corps of Engineers | Engineer Research and Development Center

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3