Long term 5G network traffic forecasting via modeling non-stationarity with deep learning

Author:

Yang Yuguang,Geng ShupengORCID,Zhang BaochangORCID,Zhang JuanORCID,Wang Zheng,Zhang Yong,Doermann David

Abstract

Abstract5G cellular networks have recently fostered a wide range of emerging applications, but their popularity has led to traffic growth that far outpaces network expansion. This mismatch may decrease network quality and cause severe performance problems. To reduce the risk, operators need long term traffic prediction to perform network expansion schemes months ahead. However, long term prediction horizon exposes the non-stationarity of series data, which deteriorates the performance of existing approaches. We deal with this problem by developing a deep learning model, Diviner, that incorporates stationary processes into a well-designed hierarchical structure and models non-stationary time series with multi-scale stable features. We demonstrate substantial performance improvement of Diviner over the current state of the art in 5G network traffic forecasting with detailed months-level forecasting for massive ports with complex flow patterns. Extensive experiments further present its applicability to various predictive scenarios without any modification, showing potential to address broader engineering problems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3