Abstract
Abstract5G cellular networks have recently fostered a wide range of emerging applications, but their popularity has led to traffic growth that far outpaces network expansion. This mismatch may decrease network quality and cause severe performance problems. To reduce the risk, operators need long term traffic prediction to perform network expansion schemes months ahead. However, long term prediction horizon exposes the non-stationarity of series data, which deteriorates the performance of existing approaches. We deal with this problem by developing a deep learning model, Diviner, that incorporates stationary processes into a well-designed hierarchical structure and models non-stationary time series with multi-scale stable features. We demonstrate substantial performance improvement of Diviner over the current state of the art in 5G network traffic forecasting with detailed months-level forecasting for massive ports with complex flow patterns. Extensive experiments further present its applicability to various predictive scenarios without any modification, showing potential to address broader engineering problems.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献