Abstract
AbstractIn soft robotics, actuators, logic and power systems can be entirely fluidic and electronics-free. However, sensors still typically rely on electric or optical principles. This adds complexity to fluidic soft robots because transducers are needed, and electrical materials have to be incorporated. Herein, we show a highly-stretchable pneumatic strain gauge based on a meandering microchannel in a soft elastomer material thus eliminating the need for an electrical signal in soft robots. Using such pneumatic sensors, we demonstrate an all-pneumatic gripper with integrated pneumatic strain gauges that is capable of autonomous closure and object recognition. The gauges can measure at least up to 300% engineering strains. The sensor exhibits a very stable signal over a 12-hour measurement period with no hysteresis. Using pneumatic sensors, all four major components of robots—actuators, logic, power, and sensors—can be pneumatic, enabling all-fluidic soft robots with proprioception and exteroception.
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献