Towards automated sleep-stage classification for adaptive deep brain stimulation targeting sleep in patients with Parkinson’s disease

Author:

Carver Katrina,Saltoun KarinORCID,Christensen Elijah,Abosch Aviva,Zylberberg JoelORCID,Thompson John A.ORCID

Abstract

AbstractSleep dysfunction affects over 90% of Parkinson’s disease patients. Recently, subthalamic nucleus deep brain stimulation has shown promise for alleviating sleep dysfunction. We previously showed that a single-layer neural network could classify sleep stages from local field potential recordings in Parkinson’s disease patients. However, it was unable to categorise non-rapid eye movement into its different sub-stages. Here we employ a larger hidden layer network architecture to distinguish the substages of non-rapid eye movement with reasonable accuracy, up to 88% for the lightest substage and 92% for deeper substages. Using Shapley attribution analysis on local field potential frequency bands, we show that low gamma and high beta are more important to model decisions than other frequency bands. These results suggest that the proposed neural network-based classifier can be employed for deep brain stimulation treatment in commercially available devices with lower local field potential sampling frequencies.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3