Physics-Informed Bayesian learning of electrohydrodynamic polymer jet printing dynamics

Author:

Oikonomou Athanasios,Loutas Theodoros,Fan Dixia,Garmulewicz AlysiaORCID,Nounesis George,Chaudhuri Santanu,Tourlomousis FilipposORCID

Abstract

AbstractCalibration of highly dynamic multi-physics manufacturing processes such as electrohydrodynamics-based additive manufacturing (AM) technologies (E-jet printing) is still performed by labor-intensive trial-and-error practices. Such practices have hindered the broad adoption of these technologies, demanding a new paradigm of self-calibrating E-jet printing machines. Here we develop an end-to-end physics-informed Bayesian learning framework (GPJet) which can learn the jet process dynamics with minimum experimental cost. GPJet consists of three modules: the machine vision module, the physics-based modeling module, and the machine learning (ML) module. GPJet was tested on a virtual E-jet printing machine with in-process jet monitoring capabilities. Our results show that the Machine Vision module can extract high-fidelity jet features in real-time from video data using an automated parallelized computer vision workflow. The Machine Vision module, combined with the Physics-based modeling module, can also act as closed-loop sensory feedback to the Machine Learning module of high- and low-fidelity data. This work extends the application of intelligent AM machines to more complex working conditions while reducing cost and increasing computational efficiency.

Funder

General Secretariat for Research and Technology

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3