A tunable multi-timescale Indium-Gallium-Zinc-Oxide thin-film transistor neuron towards hybrid solutions for spiking neuromorphic applications

Author:

Velazquez Lopez MauricioORCID,Linares-Barranco BernabeORCID,Lee Jua,Erfanijazi Hamidreza,Patino-Saucedo Alberto,Sifalakis ManolisORCID,Catthoor FranckyORCID,Myny KrisORCID

Abstract

AbstractSpiking neural network algorithms require fine-tuned neuromorphic hardware to increase their effectiveness. Such hardware, mainly digital, is typically built on mature silicon nodes. Future artificial intelligence applications will demand the execution of tasks with increasing complexity and over timescales spanning several decades. The multi-timescale requirements for certain tasks cannot be attained effectively enough through the existing silicon-based solutions. Indium-Gallium-Zinc-Oxide thin-film transistors can alleviate the timescale-related shortcomings of silicon platforms thanks to their bellow atto-ampere leakage currents. These small currents enable wide timescale ranges, far beyond what has been feasible through various emerging technologies. Here we have estimated and exploited these low leakage currents to create a multi-timescale neuron that integrates information spanning a range of 7 orders of magnitude and assessed its advantages in larger networks. The multi-timescale ability of this neuron can be utilized together with silicon to create hybrid spiking neural networks capable of effectively executing more complex tasks than their single-technology counterparts.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3