Uncovering drone intentions using control physics informed machine learning

Author:

Perrusquía AdolfoORCID,Guo Weisi,Fraser Benjamin,Wei Zhuangkun

Abstract

AbstractUnmanned Autonomous Vehicle (UAV) or drones are increasingly used across diverse application areas. Uncooperative drones do not announce their identity/flight plans and can pose a potential risk to critical infrastructures. Understanding drone’s intention is important to assigning risk and executing countermeasures. Intentions are often intangible and unobservable, and a variety of tangible intention classes are often inferred as a proxy. However, inference of drone intention classes using observational data alone is inherently unreliable due to observational and learning bias. Here, we developed a control-physics informed machine learning (CPhy-ML) that can robustly infer across intention classes. The CPhy-ML couples the representation power of deep learning with the conservation laws of aerospace models to reduce bias and instability. The CPhy-ML achieves a 48.28% performance improvement over traditional trajectory prediction methods. The reward inference results outperforms conventional inverse reinforcement learning approaches, decreasing the root mean squared spectral norm error from 3.3747 to 0.3229.

Funder

RCUK | Engineering and Physical Sciences Research Council

Royal Academy of Engineering

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wildfire and smoke early detection for drone applications: A light-weight deep learning approach;Engineering Applications of Artificial Intelligence;2024-10

2. A Novel Physics-Informed Recurrent Neural Network Approach for State Estimation of Autonomous Platforms;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Disaster Area Coverage Optimisation Using Reinforcement Learning;2024 International Conference on Unmanned Aircraft Systems (ICUAS);2024-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3