Genetically synthesized supergain broadband wire-bundle antenna

Author:

Vovchuk DmytroORCID,Uziel Gilad,Machnev Andrey,Porins Jurgis,Bobrovs VjaceslavsORCID,Ginzburg Pavel

Abstract

AbstractHigh-gain antennas are essential hardware devices, powering numerous daily applications, including distant point-to-point communications, safety radars, and many others. While a common approach to elevate gain is to enlarge an antenna aperture, highly resonant subwavelength structures can potentially grant high gain performances. The Chu-Harrington limit is a standard criterion to assess electrically small structures and those surpassing it are called superdirective. Supergain is obtained in a case when internal losses are mitigated, and an antenna is matched to radiation, though typically in a very narrow frequency band. Here we develop a concept of a spectrally overlapping resonant cascading, where tailored multipole hierarchy grants both high gain and sufficient operational bandwidth. Our architecture is based on a near-field coupled wire bundle. Genetic optimization, constraining both gain and bandwidth, is applied on a 24-dimensional space and predicts 8.81 dBi realized gain within a half-wavelength in a cube volume. The experimental gain is 8.22 dBi with 13% fractional bandwidth. The developed approach can be applied across other frequency bands, where miniaturization of wireless devices is highly demanded.

Funder

United States Department of Defense | United States Navy | ONR | Office of Naval Research Global

Israel Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3