Effect of thermal gradients on inhomogeneous degradation in lithium-ion batteries

Author:

Li Shen,Zhang Cheng,Zhao Yan,Offer Gregory J.ORCID,Marinescu MonicaORCID

Abstract

AbstractUnderstanding lithium-ion battery degradation is critical to unlocking their full potential. Poor understanding leads to reduced energy and power density due to over-engineering, or conversely to increased safety risks and failure rates. Thermal management is necessary for all large battery packs, yet experimental studies have shown that the effect of thermal management on degradation is not understood sufficiently. Here we investigated the effect of thermal gradients on inhomogeneous degradation using a validated three-dimensional electro-thermal-degradation model. We have reproduced the effect of thermal gradients on degradation by running a distributed model over hundreds of cycles within hours and reproduced the positive feedback mechanism responsible for the accelerated rate of degradation. Thermal gradients of just 3 °C within the active region of a cell produced sufficient positive feedback to accelerate battery degradation by 300%. Here we show that the effects of inhomogeneous temperature and currents on degradation cannot and should not be ignored. Most attempts to reproduce realistic cell level degradation based upon a lumped model (i.e. no thermal gradients) have suffered from significant overfitting, leading to incorrect conclusions on the rate of degradation.

Funder

Innovate UK

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3